Phospholipase C-mediated regulation of transient receptor potential vanilloid 6 channels: implications in active intestinal Ca2+ transport.
نویسندگان
چکیده
Transient receptor potential vanilloid 6 (TRPV6) channels play an important role in intestinal Ca(2+) transport. These channels undergo Ca(2+)-induced inactivation. Here we show that Ca(2+) flowing through these channels activates phospholipase C (PLC) leading to the depletion of phosphatidylinositol 4,5-bisphosphate (PIP(2)) and formation of inositol 1,4,5-trisphosphate in TRPV6-expressing cells. PIP(2) depletion was inhibited by the two structurally different PLC inhibitors 1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122) and edelfosine. Ca(2+)-induced inactivation of TRPV6 was also prevented by the PLC inhibitors in whole-cell patch-clamp experiments. Ca(2+) signals in TRPV6-expressing cells were transient upon restoration of extracellular Ca(2+) but were rendered more sustained by the PLC inhibitors. Finally, intestinal Ca(2+) transport in the everted duodenal sac assay was enhanced by edelfosine. These observations suggest that Ca(2+)-induced inactivation of TRPV6 limits intestinal Ca(2+) absorption and raise the possibility that Ca(2+) absorption can be enhanced pharmacologically by interfering with PLC activation.
منابع مشابه
Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels.
The endocannabinoid anandamide is able to interact with the transient receptor potential vanilloid 1 (TRPV1) channels at a molecular level. As yet, endogenously produced anandamide has not been shown to activate TRPV1, but this is of importance to understand the physiological function of this interaction. Here, we show that intracellular Ca2+ mobilization via the purinergic receptor agonist ATP...
متن کاملVanilloid transient receptor potential cation channels: an overview.
The mammalian branch of the Transient Receptor Potential (TRP) superfamily of cation channels consists of 28 members. They can be subdivided in six main subfamilies: the TRPC ('Canonical'), TRPV ('Vanilloid'), TRPM ('Melastatin'), TRPP ('Polycystin'), TRPML ('Mucolipin') and the TRPA ('Ankyrin') group. The TRPV subfamily comprises channels that are critically involved in nociception and thermo-...
متن کاملThe β-glucuronidase klotho exclusively activates the epithelial Ca2+ channels TRPV5 and TRPV6
Background. Active Ca2+ reabsorption in the kidney is facilitated by the epithelial transient receptor potential vanilloid Ca2+ channel subtype 5 (TRPV5). The complexglycosylated TRPV5 is expressed at the apical membrane of the renal distal convoluted tubule (DCT) cells where the pro-urine hormone klotho can stimulate its activity by N-oligosaccharide hydrolysis. This study investigates whether...
متن کاملEndogenous TRPV1 stimulation leads to the activation of the inositol phospholipid pathway necessary for sustained Ca2+ oscillations.
Sensory neuron subpopulations as well as breast and prostate cancer cells express functional transient receptor potential vanilloid type 1 (TRPV1) ion channels; however little is known how TRPV1 activation leads to biological responses. Agonist-induced activation of TRPV1 resulted in specific spatiotemporal patterns of cytoplasmic Ca2+ signals in breast and prostate cancer-derived cells. Capsai...
متن کاملCapsazepine, a Transient Receptor Potential Vanilloid Type 1 (TRPV1) Antagonist, Attenuates Antinociceptive Effect of CB1 Receptor agonist, WIN55,212-2, in the Rat Nucleus Cuneiformis
Introduction: Nucleus cuneiformis (NCF), as part of descending pain inhibitory system, cooperates with periaqueductal gray (PAG) and rostral ventromedial medulla (RVM) in supraspinal modulation of pain. Cannabinoids have analgesic effects in the PAG, RVM and NCF. The transient receptor potential vanilloid type 1(TRPV1) can be activated by anandamide and WIN55,212-2 as a cannabinoid receptor ago...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 75 3 شماره
صفحات -
تاریخ انتشار 2009